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Abstract
We discuss methodological aspects of first principles calculations of surface dipoles and potentials in general, and surface-adsorbed self-

assembled monolayers in particular, using density functional theory with a slab/super-cell approach. We show that calculations involving

asymmetric slabs may yield highly erroneous results for the surface dipole and demonstrated the efficacy of a simple dipole correction scheme. We

explain the importance of the electrostatic dipole distribution, show how to compute it, and establish conditions for the equivalence of calculations

for the dipole distribution and the electrostatic potential distribution.
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1. Introduction

The performance of most semiconductor devices is critically

dependent on the electronic properties of semiconductor

surfaces and/or interfaces [1]. Use of organic or organometallic

molecules that are surface-adsorbed as self-assembled mono-

layers (SAMs) is a potentially powerful and flexible approach

to fine-tuning the desired electronic properties of surface and

interfaces. Indeed, control over surface [2–4] and interface [5–

8] electronic structure via SAMs has been successfully

demonstrated.

A key phenomenon associated with semiconductor/SAM

interfaces is the modification of the surface dipole. SAM-

related surface dipoles – and the overall system response to

them – have recently been invoked as the controlling factor in

arenas as diverse as charge transport [5–8], chemically sensitive

field effect transistors [9], novel interface magnetic phenomena

[10,11], and even molecular nano-patterning [12].

In light of the rising importance of molecular SAM in

semiconductor interfaces, it is reasonable to attempt an

understanding and rational design of SAM-containing interface

electronic properties in general, and dipoles in particular, using
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first principles calculations [13–15]. This is especially so given

that first principles calculations based on density functional

theory (DFT) have become a powerful tool for explaining and

predicting the properties of bulk [16], surface [17], and

molecular [18] systems.

DFT studies of surfaces often employ a planewave basis,

where a ‘‘super-cell’’ geometry with three-dimensional

periodic boundary conditions is used [17]. Because the real

system is periodic in only two dimensions, a slab geometry is

used, i.e., a vacuum layer that is sufficiently large to avoid

spurious interaction between the ‘‘front’’ and ‘‘rear’’ surfaces of

the slab is inserted in the periodic cell. An example of a slab/

super-cell geometry for a nitrobenzene SAM adsorbed on the

Si(1 1 1) surface is shown in Fig. 1.

As discussed in detail below, a successful computation of

surface dipoles (and corresponding surface potentials) within

the planewave-DFT framework presents special challenges that

are often not discussed in the analysis of specific systems. The

purpose of this article is to provide a systematic discussion of

the computations of surface dipoles and potentials in general

and surface-adsorbed SAMs in particular. The paper is arranged

as follows: first, we discuss the computation of total dipole

moments; next, we discuss the computation of partial dipole

moments and finally, we discuss the computation of the surface

potential and its relation to the surface dipole. Our considera-

tions are illustrated throughout the paper by numerical
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Fig. 1. An example of a super-cell/slab geometry for surface studies—a

nitrobenzene SAM adsorbed on the Si(1 1 1) surface. (a) A one-sided slab

configuration: six layers of silicon with a nitrobenzene-adsorbed top surface and

a hydrogen-passivated bottom surface. (b) A symmetric slab configuration: six

layers of silicon with nitrobenzene adsorbed on both surfaces.
examples taken from calculations of the nitrobenzene SAM/

Si(1 1 1) system of Fig. 1.

2. Computing total dipoles

Naively, the easiest way to assess surface dipole modifica-

tions brought about by the adsorption of a molecular SAM is to

use the asymmetric slab configuration shown in Fig. 1a. In this

configuration, one surface is a reference, well-passivated

surface (e.g., hydrogen-passivated for the case of a silicon

surface) and the other surface is the SAM-adsorbed one. The

calculation of Pz, the total dipole for such a slab, then appears to

be straightforward, given simply by the overall dipole of the

super-cell in direction perpendicular to the surface (which we

define to be the z axis):

Pz ¼
Z zcell

0

z0r̄ðz0Þ dz0; (1)

where

r̄ðzÞ ¼
Z Z

A

rðx; y; zÞ dx dy (2)

is the xy-plane integrated charge density, r(x, y, z) is the

combined ionic and electronic charge density in the super-cell,

and the super-cell extends from 0 to zcell in the z direction.

Eq. (1), however, suffers from a major flaw [19–22]:

elementary electrostatics shows that a finite dipole extending in
two dimension results in a finite potential step across the dipole.

This means that physically there must be a potential difference

across the super-cell. However, such a difference is prohibited

mathematically because of the periodic boundary condition in

the z direction. As a result, a spurious electric field is set up so

that the boundary condition is obeyed. This field is directly

dependent on the total dipole and is easily shown to be given by

[21]:

Ez ¼ 4p
Pz

Azcell

¼ 4p
Pz

Vcell

; (3)

where A is the super-cell area in the xy plane and Vcell is the

super-cell volume. It has been long recognized that this spur-

ious field results in a very slow convergence of the total energy

with super-cell size [20]. However, we are not aware of a

discussion of the spurious field effect on surface dipoles.

Unfortunately, the error can be particularly severe for SAMs

because the adsorbed molecules often have a significant polar-

izability, i.e., an electric-field induced polarization. This means

that, to first order, the dipole calculated from Eq. (1), Pz, will be

related to the true dipole, P0
z , via:

Pz ¼ P0
z þ aEz; (4)

where a is an effective polarizability. Inserting Ez from Eq. (3)

and solving for Pz we obtain:

Pz ¼
P0

z

1� 4pa=Vcell

: (5)

Thus, the higher the SAM polarizability, the worse its dipole

will be overestimated. Furthermore, the electronic structure of

highly polarizable molecules may change significantly in reac-

tion to the spurious field, resulting in a quantitatively, and

possibly even qualitatively, incorrect computed electronic

structure of the SAM/substrate interface.

There are two known remedies to the spurious field problem:

One is to correct for the total energy a posteriori [20]. This is not

helpful in the present case, because we are interested in the

dipole itself and not just in its effect on the energy. The other

remedy is to place an additional dipolar sheet far enough inside

the vacuum region, such that the overall dipole across the super-

cell is now zero, and modify the upper limit for the integral in

Eq. (1) accordingly [21]. The latter approach involves the

introduction of an extra charge-dependent term in the

Hamiltonian of the self-consistent problem to be solved. This

is no problem in principle, although our experience with

employing this correction suggests that it occasionally results in

convergence problems [23].

As a concrete example for the magnitude of the errors

involved, we calculated [23] the dipole of a periodic two-

dimensional array of nitro-benzene molecules, with one

molecule per super-cell, for various super-cell dimensions.

For simplicity, we used the molecular gas phase structure and

did not include an underlying substrate. The results of the

calculations, with and without a dipole correction, are given in

Table 1. We note that, computational artifacts aside, we do

expect the dipole of this array to decrease with decreasing
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Table 1

Calculation of the surface dipole for a periodic array of nitrobenzene molecules with one molecule per cell, with and without an explicit dipole correction

Cell size (Å) Dipole with correction (D) Dipole without correction (D) Energy difference (eV)

3.83 � 6.64 � 20 2.58 3.32 0.07

7.44 � 6.64 � 20 3.27 3.87 0.05

10.58 � 10.58 � 15.87 3.98 4.48 0.04

Total energy differences due to the dipole correction are also given.

Fig. 2. (a + b) Calculated electrostatic dipole perpendicular to the surface as a

function of position inside the structure, using (a) Eq. (6) and (b) Eq. (7). (c)

Charge density map in the yz plane for the same configuration. The special

planes (i)–(v) contain the middle of the C–N bond, the C–C bond in the center of

the benzene ring, the Si–C bond, a Si–Si bond inside the bulk that is

perpendicular to the x–y plane, and a Si–Si bond inside the bulk that is nearly

parallel to the x–y plane, respectively.
lateral distance between molecules due to dipole–dipole

depolarization effects [15]. This is indeed clearly observed.

However, omitting the dipole correction causes a very

significant overestimate of the dipole, by 0.5–0.7 D, in

agreement with the prediction of the phenomenological

Eq. (5). This is despite the fact that the associated total energy

change is a much more modest 0.04–0.07 eV, highlighting the

need for explicit dipole correction.

3. Computing partial dipoles

A different route to avoiding spurious dipole calculations

is to use a symmetric slab, as shown in Fig. 1b, whose total

dipole is inherently zero. This appears to be a waste of

computational resources. However, this approach is free of

the above-mentioned convergence issues of calculations with

a complete dipole correction and may therefore be efficient in

practice.

Because the total dipole in this approach is zero, the

calculation of partial dipole values within the structure is now

necessary. In fact, such calculations are often desirable even

when employing asymmetric slabs because they yield

information about the evolution of the surface dipole along

the structure and point to regions where its build-up is

particularly significant. For example, one can then tell which

part of the dipole drops on the SAM and which part drops on the

semiconductor substrate.

We found it convenient to evaluate all dipoles against a

vacuum reference plane, such that in the vacuum the dipole is

zero by construction and all partial dipoles are given with

respect to the vacuum. The partial dipole at an arbitrary plane z

in the super-cell is then given by [24]:

PzðzÞ ¼
Z zcell

z

z0r̄ðz0Þ dz0: (6)

It is important to note that while Eq. (6) is mathematically well-

defined, it is physically well-defined only in z planes that divide

the overall structure into two neutral sub-units (e.g., the middle

point of various bonds). For all other planes, the overall charge

between z and zcell is not zero. Thus, the result of Eq. (6) would

depend on the choice of origin so that, e.g., moving the slab

with respect to the super-cell edges would change the dipole.

Furthermore, Eq. (6) does not offer a simple way of locating the

physically meaningful z planes. However, such a location is

easy with a slight modification of Eq. (6):

PzðzÞ ¼
Z zcell

z

ðz0 � zÞr̄ðz0Þ dz0: (7)
Eqs. (6) and (7) are, in general, not equivalent. However, at the

physically meaningful z planes (that divide the structure to two

neutral sub-units) Eqs. (6) and (7) will yield identical results

because
R zcell

z r̄ðz0Þ dz0 ¼ 0 by definition. Differentiating Eq. (7)

with respect to z, we obtain:

dPzðzÞ
dz

¼ �
Z zcell

z

r̄ðz0Þ dz0: (8)

Eq. (8) shows that physically meaningful dipole values are

obtained from Eq. (7) at and only at z values for which Pz(z) is at

an extremum, for only then is the right hand side zero and the

structure is divided into neutral sub-units.

Another advantage of Eq. (7) over Eq. (6) is that it is much

more stable numerically, because in Eq. (6) small deviation in

the charge density can be weighted by a large z value and

introduce a large error. This is a serious problem in practice

because most planewave codes provide the charge density on a

finite grid that does not generally correspond to the physically

meaningful z planes.

As an example of the foregoing considerations, we consider

the evolution of the dipole for the symmetric nitrobenzene

SAM/Si(1 1 1) surface shown in Fig. 1b. Partial dipoles have

been evaluated using both Eqs. (6) and (7). The results are given
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in Fig. 2. Clearly, dipoles obtained with Eq. (6) (Fig. 2a) are too

numerically sensitive to yield any useful information. Dipoles

obtained with Eq. (7) (Fig. 2b), however, are numerically

stable. Fig. 2b additionally shows that much of the formed

dipole is formed in the functional (nitro) group itself, but a

significant fraction of it is formed in the benzene ring and its

full value is obtained only inside the silicon.

Comparison of the dipole evolution with a charge density

map in the yz plane (given in Fig. 2c) reveals that, in agreement

with Eq. (8), many extremal points correspond to z planes that

obviously do divide the slab into neutral sub-units, such as

planes perpendicular to bond centers. The special z planes

correspond to both ‘‘higher’’ local maxima (e.g., point (iv) in

Fig. 2) and ‘‘lower’’ local maxima (e.g., point (v) in Fig. 2) of

the dipole curve. The ‘‘higher’’ maxima planes are perpendi-

cular to bonds, whereas the ‘‘lower’’ maxima planes are not and

hence result in a different partial dipole value. Interestingly,

Leung et al. [24] used Eq. (6) for dipole evaluation. They

recommended, without proof, that the lower limit for

integration ‘‘be chosen to be the mid point between any two

layers that are deep in the bulk’’. The above discussion provides

a rationale for this choice. Importantly, the difference between

the ‘‘high’’ and ‘‘low’’ locally maximal dipole values is very

large—about 9.5 D. This means that a consistent reference

point (which we chose, for reasons elaborated below, as the

‘‘high’’ maxima planes in the bulk) should be used when

comparing different SAMs.

As a further demonstration of the additional information

inherent in a partial dipole calculation, we computed the partial

dipole distribution of a symmetric slab and compared it to the

total dipole of an asymmetric slab (calculated with a full dipole

correction) where the bottom surface was passivated with

hydrogen atoms, for several different SAMs. The comparison

yielded values that were shifted consistently by 1.8 D (with a

deviation smaller than 0.01 D). This deviation is due to the

dipole of the passivated surface. As there are two Si–H bonds

per super-cell, we estimate the dipole of an individual surface

Si–H bond at the particular geometry [15] shown in Fig. 1a to be

0.9 D.

4. From dipoles to potentials

We now turn to assessing the surface dipole effect on the

surface potential. This is important, because surface potential

modifications are reflected in the surface work function—an

important quantity that is easily accessible experimentally

[4].

Because of the lateral periodicity of the charge density, it

may Fourier-expanded in the x and y coordinates, in the form

[21]:

rðx; y; zÞ ¼ r̄ðzÞ
A
þ
X
Gx;Gy

0
rðz;Gx;GyÞ eiðGxxþGyyÞ; (9)

where Gx, Gy are the x and y components of the super-cell’s

reciprocal lattice vectors. The Fourier expansion of the elec-

trostatic potential is then easily found by solving the Poisson
equation for each Fourier component separately, with the result

being [21]:

Vðx; y; zÞ ¼ VavðzÞ þ
X
Gx;Gy

0
Vðz;Gx;GyÞ eiðGxxþGyyÞ; (10)

where:

VavðzÞ ¼ �
2p

A

Z zcell

0

r̄ðz0Þjz� z0j dz0; (11)

Vðz;Gx;GyÞ ¼
2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G2
x þ G2

y

q

�
Z zcell

0

dz0rðz0;Gx;GyÞ e�jz�z0 j
ffiffiffiffiffiffiffiffiffiffiffi
G2

xþG2
y

p
(12)

Physically, Vav(z) Eq. (11) is the potential obtained if one views

the slab as a series of infinitesimal planes, each with a uniform

charge, with the Fourier components of Eq. (12) revealing how

significant the deviation from non-uniformity is. If

jz� z0j>maxð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

x þ G2
y

q
Þ, i.e., larger than the leading lat-

eral dimension of the super-cell, which is typically indeed the

case a few Å into the vacuum region, then the contribution of

Eq. (12) to the potential is negligible. Vav(z) is therefore a good

measure of the surface potential of the monolayer.

We now show that Vav(z), calculated using Eq. (11), is

intimately related to Pz(z) calculated from Eq. (7) (but not from

Eq. (6)). Assume that the total dipole for the whole slab is Pz

(which, as discussed above, must be accompanied in the

calculation by a corrective dipole of magnitude—Pz). Then,

employing considerations similar to those used in deriving

Eq. (7), we obtain:

Z z

0

r̄ðz0Þjz0 � zj dz0 ¼
Z zcell

z

r̄ðz0Þjz0 � zj dz0 � Pz (13)

Using Eq. (13) in Eq. (11) yields:

VavðzÞ ¼ �
4p

A

Z zcell

z

r̄ðz0Þjz� z0j dz0 þ 2p

A
Pz; (14)

Comparing Eq. (14) to Eq. (7) we find that (to within an

uninteresting additive factor that depends on the total dipole

and the definition of the zero of potential):

VavðzÞ ¼ �
4p

A
PzðzÞ (15)

To demonstrate Eq. (15), Fig. 3 shows the average electrostatic

potential for the asymmetric, dipole corrected nitrobenzene

SAM/Si(1 1 1) system. The average potential is calculated both

by averaging the electrostatic potential directly and by comput-

ing it from the dipole using Eqs. (7) and (15). Clearly, the two

curves are nearly identical around the ‘‘high’’ maxima and in

the vacuum region, except at and beyond the dipole correction

sheet (see special plane (vi) in the figure), as this sheet is not

represented in the charge density of the actual system. How-

ever, there are additional differences. The potential calculated

by direct averaging features distinct minima, whereas the one

computed from the dipole features cusps and ‘‘low’’ maxima
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Fig. 3. Comparison of averaged electrostatic potential computed by explicit

averaging of the potential (solid line) and from the average dipole (dashed line).

The special planes (i)–(v) contain the middle of the C–N bond, the C–C bond in

the center of the benzene ring, the Si–C bond, a Si–Si bond inside the bulk that is

perpendicular to the x–y plane, and a Si–Si bond inside the bulk that is nearly

parallel to the x–y plane, respectively. The special plane (vi) indicates the

position of the dipole correction sheet.
instead. These differences arise despite the formal identity of

the two calculations demonstrated in Eq. (15), for the following

physical reason: When using Eq. (7), the ionic charge density is

added as a set of point charges to the electronic charge density.

However, the DFT calculations performed here additionally

replace the nuclear charge and core electrons by an approx-

imate treatment [23] that causes a smoothing of the electrostatic

potential. Because this causes both the electrostatic potential

and the charge density to differ from their true values in the

vicinity of the nuclei, neither calculation is rigorously valid in

that region.

The preceding argument establishes rigorously that the

computation of the averaged electrostatic potential, together

with Eq. (15), may be used as a possibly easier alternative to a

direct calculation of the dipole. It also establishes that using

either dipoles or average potentials, the extrema between the

nuclei in the bulk should be used as reference. We emphasize

that as long as we are interested in relative changes in the

work function (e.g., upon adsorption of a monolayers),

comparing surface dipoles and potentials using this reference

point is a valid approach. If one is interested in an absolute

value, the position of the bulk Fermi level needs to be

determined additionally, as has been discussed in detail

elsewhere [25].

5. Conclusions

In conclusion, we provided a systematic discussion of first

principles computation of surface dipoles and potentials in

general and surface-adsorbed SAMs in particular, using DFT

with a slab/super-cell approach. We explained why calculation

of an asymmetric slab may yield highly erroneous results for
the surface dipole and demonstrated the efficacy of a simple

correction scheme. We explained the importance of the

electrostatic dipole distribution, showed how to compute it,

and established conditions for the equivalence of calculations

for the dipole distribution and the electrostatic potential

distribution.
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